
Parallelizing Deep Neural Networks using MPI

and GPU Computing

Pradeep Singh

Computational Science Research Center,
San Diego State University

Spring 2018

Abstract

In this project, I have implemented a basic neural network model in
Python using MPI and GPU computing. The goal of this project is to de-
velop a sequential and parallel neural network model using MPI and GPU
and measure the improvement in performance and speed up in training
time. I have studied two methods to parallelize a neural network model:
data-based parallelism, model-based parallelism, and implemented data-
based parallelism.

Introduction

In the last few years, the field of Machine Learning has grown exponentially
and has produced some state of the art results in computer vision and natural
language processing etc. area. The part of this progress comes from deep neural
network based models, also called deep learning/ deep neural nets.

Deep learning models are very powerful because of their ability to learn a
high and low-level representation of the data (image, voice, language, etc.), but
this comes at cost of large training time and mind-boggling compute require-
ment. This is primarily because any deep learning model is grounded in learning
parameters over the entire parameter space hundreds of times. And, this process
is nothing but large matrix multiplication operations. Computing these large
matrices takes a lot of time and power. Thus, in last few years GPU computing
has provided a viable option that could speed up the entire learning/ training.
This project explores a basic parallel deep neural network models and applies
them over Fashion MNSIT dataset. I have developed two version of this model
using Python – sequential and parallel version.

Neural Networks

Neural networks are computing systems that are loosely inspired by biological
neurons. They are the building blocks of Deep learning models. In the last

1



Figure 1: Neural Network with 2-hidden layers

decade or so, they have completely revolutionized the machine learning. Intu-
itively, neural networks are the nothing but the nonlinear function, which passes
non-linearity to the output as input propagates through them. Any neural net-
work is consist of multiple layers, in which all the layers can have a different
number of neural units. When these layers are stacked on top of each other,
increasing the depth of the model thus we call them deep neural nets. All these
layers are connected to the previous/ next layer through weights.

Each layer learns some high/ low-level representation of the data. Thus, by
adding more layers we can learn more abstraction of the data and thus leading
to better performance. But, adding more layers increases the complexity of the
model and thus leads to high compute time and power.

Neural networks are computationally intensive because they need to update
millions of parameters numerous times in order to minimize error and produce
an accurate model. Those updates are basically nothing but large matrix mul-
tiplication operations. The only way to train neural networks on very large
datasets is to give them lots of time, lots of cores, or both.

Dataset

The Fashion-MNIST is a dataset of Zalando’s articles images – consisting
of a training set of 60,000 examples and a test set of 10,000 examples. Each
example is 28X28 grayscale image, associated with a label from 10 classes.

2



Target Class Definition

0 T-shirt
1 Trouser
2 Pullover
3 Dress
4 Coat
5 Sandal
6 Shirt
7 Sneaker
8 Bag
9 Ankle Boot

The dataset was divided into 3 parts – training set, validation set, and testing
set. All the different versions of different models were trained on training data
first and then evaluated using the validation set. Only the best models were
used to test the testing data set.

Parallelism: Model and Data based

Neural networks based models can be parallelized in two ways: Model-based
parallelism and Data-based parallelism. I have specifically focused on data-
based parallelism method.

Data parallelism:

Data parallelism is basically when you use the same model for every thread,
but feed it with different parts of the data and model parallelism is when you
use the same data for every thread, but split the model among threads. For
neural networks, this means that data parallelism uses the same weights and but
different mini-batches in each thread and the gradients need to be synchronized,
i.e. averaged, after each pass through a mini-batch.

Model parallelism:

Model parallelism splits the weights of the net equally among the threads and
all threads work on a single mini-batch; here the generated output after each
layer needs to be synchronized, i.e. stacked, to provide the input to the next
layer.

Parallelizing the neural network in this way (either of the methods) can
significantly reduce the training time for the model. And, this coupled with GPU
computing can even speed up the process. I have used MPI and GPU computing
technologies are used to implement data parallelism. The core concept is to
split the input dataset, distribute the subsets to the work nodes, and collect the
results computed by GPU.

MPI: Message Passing Interface

MPI is a specification for the developers and users of message passing libraries.

3



Figure 2: Concept of data parallelism on GPU cluster

By itself, it is NOT a library - but rather the specification of what such a library
should be.

MPI primarily addresses the message-passing parallel programming model:
data is moved from the address space of one process to that of another process
through cooperative operations on each process.

MPI standard provides many operations that can be used to distribute the
workload/ task parallelly among different processes in the same machine or in a
cluster. Some of the operations that I have used in this project are: broadcast,
scatter and gather. I have specifically used MPI for Python package (mpi4py)
to execute above mentioned MPI operation in my model.

Figure 3: Some of MPI collective functions

To distribute dataset to worknodes (Scatter) in mpi4py. The scatter function
splits a dataset into several subsets and makes the subsets evenly distributed

4



to a group of processes. To collect training results of worknodes (Gather) in
mpi4py. the gather function does the opposite, collects data from a group of
processes, and reassembles the collected data into a complete dataset. To syn-
chronize the weights of neural network among worknodes (Bcast) using mpi4py.
The broadcast function helps a process share information with the other pro-
cesses. All the processes will get a copy of the data assigned by the broadcast
function.

Experiments

In order to measure speed up, I have tried different experiments with different
models on different hardware (CPU and GPU). I have trained my parallel and
sequential neural network models on CPU and GPU.

• Data parallelism vs Sequential execution: with CPU

• Data parallelism vs Sequential execution: with GPU

Any typical neural network model typically comprises of many parameters
which needs to be optimized. I have tried various combinations of parameters
and have reported just the one that worked best for my model.

The parameters of the learning algorithm:

• Learning rate: 0.01

• Gradient descent iteration: 60

• Activation function: sigmoid

Result

Figure below show the results of data parallelism performance comparison be-
tween sequential and parallel models.

Figure 4: Data parallelism performance comparison

5



Observation

Data parallelism brings performance improvement

We are getting some improvement, but, the improvement seems to be trivial;
this might be because the dataset that we have used is small to exploit the
parallel computing ability. However, the really important fact behind is that we
are now able to scale-out the computing ability from one machine to the GPU
cluster easily. Since GPU computing is still one of the most effective technology
for deep learning, this technique can make the learning process much faster.

GPU computing seems to be slower than CPU computing,
is it true?

The fact that GPU is slower in above figures does not mean that CPU is a bet-
ter tool than GPU for deep learning. Actually, it just reflects the fact that the
cost of memory copy between system and GPU memories is expensive. Because
the size of the sample neural network is small, the computation loads are not
really heavy. Therefore, the improvement to the total computing time by using
GPU is overwhelmed by the time consumed while copying inputs and outputs
between system memory and GPU memory.

When the size of the data is bigger, the ratio of time to compute and time to
execute memory copy is also getting larger; GPU computing starts to show its
power. Huge dataset and a larger number of hidden layers make GPU computing
a desirable tool for deep learning

Conclusion

Among all experiments (CPU vs GPU), parallel model is getting more speedup
as compared to sequential model. On CPU based computing, we are getting
nearly 50% speedup and on GPU based computing we are getting more than
50% speedup. This is in line with what is expected when you distribute your
workload and parallelize your learning/ training process.

I believe we can achieve more speed up if we use large dataset and or have a
more complex/ deep model. GPU computing can also be exploited much more
by using CUDA.

6


