
Bayesian Optimization for 
Machine Learning

Math 693 A – Project

by

Pradeep Singh



Outline
• Machine Learning & Hyperparameters

• Hyperparameter Optimization
• Grid Search

• Random Search

• Manual Search / Hand Tuning

• Problem with current methods?

• Bayesian Optimization
• Surrogate Models

• Acquistion Functions

• Algorithm

• Tuning XGBoost Hyperparameters

• Results

• Conclusion



What is Machine Learning?

In general, machine learning is study of algorithms and models that
learns from data.

Mathematically, a machine learning model is a function that maps
inputs to the outputs with several (hyper)parameters that need to
be learned from the data by fitting a model to the data.



Hyperparameters & Tuning

• Special kind of parameters that cannot be directly learned from the
regular training process.

• Express “higher-level” properties of the model such as its complexity
or how fast it should learn.

• Fixed before the actual training process begins.

• Examples: number of neural network layers, learning rate, depth of a
tree, number of clusters in k-means, etc.



Can we frame this as an Optimization Problem? 

• Given a learner M, with parameters x and a loss function f, find x such
that f is maximized, or minimized, by evaluating f for sampled values
of x.

• In short, find the optimal hyperparameter values of a learning
algorithm that produce the best model.

• Current Methods:
1. Grid Search

2. Random Search (Current best)

3. Manual Search (Graduate student search)



Grid Search

Photo by Bergstra, 2012

http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf


Random Search

Photo by Bergstra, 2012

http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf


Manual Search (Grad student search)

• Humans manually pick and choose different values for different
parameters and select the best one.

• Humans have ability to learn from previous experience and mistake,
which they use to evaluate their choices for parameters when tuning
their models.

• Least productive methods.



Problem?

• Let’s assume, we need to tune a model with 5 hyperparameters:

• This is crazy.

• NOTE: Typically, network trains much longer and we need to tune more
hyperparameters, which means that it can take forever to run grid search, manual
search or even random search for typical neural network.

Hyperparameters 5 (5-dimensional problem)

Number of values 10 per parameter

Number of evaluations 100,000 evaluations

Training Time 10 mins (on avg.) per evaluation

Time for tuning model 100,000 * 10 mins = almost 2 years



Problems & What do we need?

• Time consuming.

• Resource intensive.

• Use previous evaluations to select next sample to evaluate for. Sample wisely.

• How certain or uncertain are we of our model? Account for uncertainty.

• Move in right direction. If you can't be correct, try to be less wrong.

• And, that's what Bayesian methods do:
a) They use prior belief to find next samples.

b) They account for uncertainty.



Bayesian Optimization

• Bayesian optimization is a derivative-free optimization method.

• Falls in a class of optimization algorithms called Sequential model-based
optimization (SMBO) algorithms.

• Basic Idea: Model objective function using some surrogate model and use
previous observations of the objective function, to determine the next (optimal)
point to sample function for.

• Two important parts:
1. Surrogate Models

2. Acquisition Functions



Basic Idea:

Build

Build a surrogate 
probability model 
of the objective 
function.

Find

Use acquisition 
function to 
find best 
hyperparameter 
for surrogate 
model.

Apply

Apply these 
hyperparameters 
to the true 
objective 
function.

Update

Update the 
surrogate model 
incorporating the 
new results.

Repeat

Repeat steps 2–4 
until max 
iterations or time 
is reached



• A GP is the generalization of a Gaussian distribution to a distribution
over functions, instead of random variables and is specified by its
mean function m(x), and covariance function k(x,x′).

• Think of a GP as a function that, instead of returning a scalar f(x),
returns the mean and variance of a normal distribution over the
possible values of f at x.

Why GP?

• The GP posterior is cheap to evaluate.

• Posterior distribution over the loss function is analytically tractable.

Surrogate Model (Gaussian Processes)



What point to sample next?

• Given all this useful guessed information, what point should we 
check next?

• There are two things we care about:
• Exploration

• Exploitation

• Use acquisition functions
• Expected improvement

• Probability of improvement

• Entropy search

• Upper confidence bound



Acquisition functions

• Acquisition functions propose sampling points in the search space 
using exploitation-exploration tradeoff.

• Exploitation - sampling where the surrogate model predicts a high 
objective.

• Exploration - sampling at locations where the prediction uncertainty 
is high.

• Both correspond to high acquisition function values.



Expectation of Improvement (EI)

• Evaluate the next point where the expected improvement is highest.

• So if:

1. 𝜇(𝑥) is the guessed value of the function at 𝑥.

2. 𝜎(𝑥) is the standard deviation of output at 𝑥.

3. Φ(⋅) and N(⋅) refers to the CDF and PDF of a standard normal distribution.

• Then our expectation of improvement is 𝐴(𝑥),



Intution behind EI:

 EI is high when the (posterior) expected value of the loss μ(x) is
higher than the current best value f(x); OR

 EI is high when the uncertainty σ(x) around the point x is high.

Intuitively, this makes sense,

• If we maximize the expected improvement, we will either sample 
from points for which we expect a higher value of f, or points in a 
region of f we haven’t explored yet (σ(x) is high).

• In other words, it trades off exploitation VS exploration.



Algorithm:
Start with some 

observed 
values(prior) of f.

Update the 
posterior 

expectation of f 
using the GP model.

Find x_new that 
maximizes the EI.

Compute the value 
of f for the point 

x_new.

Update surrogate 
model (prior)

* Repeat for a pre-specified number of iterations, or until convergence.



Bayesian Optimization of XGBoost:

• Using Random search and Bayesian Optimization

• Hyperparameters to be optimzed: (5-dimensional)
• Learning rate {Uniform (0, 1)}

• Gamma {Uniform (0, 5)}

• Max Depth {range(1, 50)}

• Number of estimators {range(1, 300)}

• Minimum child weight {range(1, 10)}

• Dataset – A toy (diabetes) dataset with 500 samples



Results



Conclusion

• On average, Bayesian optimization finds a better optimium in a 
smaller number of steps than random search.

• This trend becomes even more prominent in higher-dimensional 
search spaces.

• Here, the search space is 5-dimensional which is rather low to 
substantially profit from Bayesian optimization.



References:
1. J. Mockus (2013), Bayesian approach to global optimization: theory and applications. Kluwer Academic.

2. E. Brochu (2010), A Tutorial on Bayesian Optimization of Expensive Cost Functions. arXiv:1012.2599.

3. J. Bergstra (2011), Algorithms for hyper-parameter optimization. Advances in Neural Information 
Processing Systems, 2011.

4. J. Bergstra (2012), Random Search for Hyper-Parameter Optimization. Journal of Machine Learning 
Research 13 (2012) 281-305

5. Peter I. Frazier (2018), A Tutorial on Bayesian Optimization. arXiv:1807.02811

6. J. Snoek (2012) Practical Bayesian Optimization of Machine Learning Algorithms. Advances in Neural 
Information Processing Systems, 2012.

7. B. Letham (2018), Efficient tuning of online systems using Bayesian optimization. Facebook AI Research -
Bayesian Analysis 2018.

8. R. Jenatton (2017), Bayesian Optimization with Tree-structured Dependencies. PMLR 70:1655-1664, 2017.



Thanks!


