
Bayesian Optimization for Machine Learning

Math 693A: Numerical Optimization
Project Proposal

Pradeep Singh

Computational Science Research Center,
San Diego State University, CA

Abstract

This project explores Bayesian optimization techniques for hyperparameter tuning in machine learning al-
gorithms and will compare it with different methods like: manual search, grid search, random search. Goal
of this project is twofold: 1) To study how bayesian optimization can be used in hyperparameter tuning
in order to improve the current methods, and 2) Comprehensive analysis of hyperparameter optimization
algorithms in Machine Learning.

Introduction

All the machine learning algorithms involve optimization of a loss function in order to tune the learning
parameters and model hyperparameters that return the best performance. The most common methods are:
manual search, grid search, random search, etc. These methods are inefficient because they do not choose
the next hyperparameters to evaluate based on previous results, as a result, they often spend a significant
amount of time evaluating “bad” hyperparameters. This problem could be solved using Bayesian methods,
as they takes into account the previous results and make an informed guess on top of that for the next
hyperparameter value.

Bayesian Optimization

Bayesian optimization falls in a class of optimization algorithms called sequential model-based optimization
(SMBO) algorithms [E Brochu, 2010]. These algorithms use previous observations of the loss function, to
determine the next (optimal) point to sample function for.

Bayesian approach could be used to tune hyperparameters; it keep track of past evaluation results which
it use to form a probabilistic model mapping hyperparameters to a probability of a score on the objective
function. This model is called a “surrogate” for the objective function and is represented as:

p(y|x) OR p(score|hyperparameters)

The surrogate is much easier to optimize than the objective function. Bayesian methods work by finding
the next set of hyperparameters to evaluate on the actual objective function by selecting hyperparameters
that perform best on the surrogate function. The aim of Bayesian reasoning is to become “less wrong” with
more data which these approaches do by continually updating the surrogate probability model after each
evaluation of the objective function.

In other words:
1. Build a surrogate probability model of the objective function.

2. Find the hyperparameters that perform best on the surrogate

3. Apply these hyperparameters to the true objective function.

1

4. Update the surrogate model incorporating the new results.

5. Repeat steps 2–4 until max iterations or time is reached.

What?

I plan to work on a machine learning algorithm using different hyperparameter tuning methods: Bayesian
Optimization, Gird Search and Random Search. The idea is to compare how Bayesian Optimization performs
in comparison to different methods.

Why?

Bayesian optimization methods are more efficient as compare to other hyperparameter tuning methods used
in machine (deep) learning. They choose the next hyperparameters in an informed manner, unlike other
methods. The basic idea is: spend a little more time selecting the next hyperparameters in order to make
fewer calls to the objective function. In practice, the time spent selecting the next hyperparameters is
inconsequential compared to the time spent in the objective function. By evaluating hyperparameters that
appear more promising from past results, Bayesian methods can find better model settings than random
search or grid search in fewer iterations.

How?

This project will be implemented in Python. I will be using some python packages like NumPy, SciPy, and
Scikit-learn to code up the algorithms. I’m currently in the process to nail down the dataset, once that
is done, will decide which machine algorithm will work best on it. The aim of this project is not to do
machine learning but to study and implement Bayesian optimization in any given machine learning model.
I’ll work on a smaller dataset so that I can focus more on optimization part and less on the machine learning.

References

• (E Brochu, 2010), A Tutorial on Bayesian Optimization of Expensive Cost Functions. arXiv:1012.2599.

• (J. Bergstra, 2011), Algorithms for hyper-parameter optimization., Advances in Neural Information
Processing Systems, 2011.

• (T. Huijskens, 2018), Bayesian optimization with scikit-learn.

2

