
From Autoencoders to betaVAE: A Survey

Pradeep Singh

Computational Science Research Center,
San Diego State University

Dec 2018

Abstract

Autocoders are a family of neural network models that aims to learn
compressed latent representation of high-dimensional data. In this project,
I study, review and implement autoencoders in various forms: basic au-
toencoder, denoising, sparse, and contractive autoencoders, and then Vari-
ational Autoencoder (VAE) and its modification beta-VAE. The goal of
this project is to study and understand how autoencoders (and it’s vari-
ants) work.

1 Introduction

Autoencoders are a family of artificial neural network that learns (without any
supervision) how to encode (and decode) data from high-dimensional space to
low-dimensional space and vice-versa. Autoencoders were invented to recon-
struct high-dimensional data using a neural network model with a narrow bot-
tleneck layer in the middle. A nice byproduct is dimension reduction: the bot-
tleneck layer captures a compressed latent encoding. Such a low-dimensional
representation can be used as en embedding vector in various applications (i.e.
search), help data compression, or reveal the underlying data generative factors.

This idea was originated in the 1980s, and later promoted by the seminal
paper by Hinton & Salakhutdinov, 2006.

Autoencoders, by design , reduces data dimensions by learning how to ig-
nore the noise in the data. Every autoencoders is consists of 4 main parts:

• Encoder: Neural network model that learns how to reduce the input di-
mensions and compress the input data into an latent representation.

• Bottleneck: Hidden layer that contains the compressed representation of
the input data.

• Decoder: Neural network model that learns how to reconstruct the data
from the encoded representation to original space.

• Reconstruction Loss: Measure for how well decoder can reconstruct output
in comparison to original input.

1

Figure 1: Simple architecture for an autoencoder, consisting of encoder and
decoder network. Image source: Will Badr, 2019

The training then involves using back propagation in order to minimize the
network’s reconstruction loss.

2 Vanilla Autoencoder

Vanilla autoencoder, also known as simple autoencoder is consist of two net-
works: encoder and decoder.

1. Encoder network: It translates the original high-dimension input into the
latent low-dimensional code. The input size is larger than the output size.

2. Decoder network: The decoder network recovers the data from the code,
likely with larger and larger output layers.

The encoder network essentially accomplishes the dimensionality reduction,
just like how we would use Principal Component Analysis (PCA) or Matrix
Factorization (MF) for. In addition, the autoencoder is explicitly optimized for
the data reconstruction from the code. A good intermediate representation not
only can capture latent variables, but also benefits a full decompression process.

Figure 2: An autoencoder model architecture. Image source: Lilian Weng, 2018

2

The model contains an encoder function g(.) parameterized by φ and a de-
coder function f(.) parameterized by θ. The low-dimensional code learned for in-
put x in the bottleneck layer is z= and the reconstructed input is x = fθ(gφ(x)).

The parameters (θ, φ) are learned together to output a reconstructed data
sample same as the original input, x ≈ fθ(gφ(x)), or in other words, to learn an
identity function. There are various metrics to quantify the difference between
two vectors, such as cross entropy when the activation function is sigmoid, or
as simple as MSE loss:

LAE(θ, φ) =
1

n

n∑
n=1

x(i) − fθ(gφ(x(i)))2

Vanilla autoencoder can be of two types depending upon how many units
hidden layers have;

• Undercomplete: If hidden layers dimesnionality is less than input/ previ-
ous hidden layer. This is also a way of constraining autoencoders to learn
the most salient features of the training data.

• Overcomplete: If hidden layers dimesnionality is more than input/ previ-
ous hidden layer.

Since, all that autoencoder does is, it learns the identity function (in other
words; it learns how to copy data from input to the output), it is very prone
to overfitting. In cases like overcomplete autoencoders, where model has large
capacity to learn noise and data, we will need some sort of regularization meth-
ods to put constraint on model, so that it learns some useful representation of
data rather than just learning the data itself.

3 Regularized Autoencoder

Since the autoencoders learn the identity function, it could “overfit” when there
are more network parameters than the number of data points. To avoid over-
fitting and improve the robustness, we can introduce some regularization in the
training process. This will put constraints on the model and will help model in
learning some useful representation of data.

3.1 Denoising Autoencoder

Denoising Autoencoder (Vincent et al. 2008) is basically a vanilla autoencoder
only, where input is partially corrupted by adding some noise and then the
model is trained to recover the original input.

Let’s say we have some input x which is partially corrupted by adding noises
to or masking some values of the input vector in a stochastic manner, x̂ ∼
MD(x̂|x).

x̂(i) ∼MD(x̂(i)|x(i))

3

LDAE(θ, φ) =
1

n

n∑
n=1

x(i) − fθ(gφ(x̂(i)))2

where MD defines the stochastic mapping from the true data samples x to
the noisy or corrupted ones x̂. The data corruption (addition of noise) is not
specific to a particular type of corruption process (i.e. masking noise, Gaussian
noise, salt-and-pepper noise, etc.), it can also be equipped with prior knowledge
(eg: some prior distribution).

Figure 3: An Denoise Autoencoder model architecture. Image source: Lilian
Weng, 2018

3.2 Sparse Autoencoder

Sparse Autoencoder applies a “sparse” constraint on the hidden activation units
to avoid overfitting and improve robustness. It forces the model to only have
a small number of hidden units being activated at the same time, or in other
words, one hidden neuron should be inactivate most of time.

Let’s say there are s neurons in the lth hidden layer and the activation

function for the jth neuron in lth layer is labelled as a
(l)
j (.), j = 1, . . . , sl. The

fraction of activation of this neuron ρ̂ is expected to be a small number ρ, known
as sparsity parameter; a common config is ρ = 0.05.

ρ̂
(l)
j =

1

n

n∑
n=1

[alj(x
i)] ≈ ρ

This constraint is achieved by adding a penalty term into the loss function.
The KL-divergence DKL measures the difference between two Bernoulli distri-

butions, one with mean ρ and the other with mean ρ̂
(l)
j . The hyperparameter β

controls how strong the penalty we want to apply on the sparsity loss.

4

LSAE(θ) = L(θ) + β

L∑
l=1

sl∑
j=1

DKL(ρ||ρ̂(l)j)

LSAE(θ) = L(θ) + β

L∑
l=1

sl∑
j=1

ρlog
ρ

ρ̂
(l)
j

+ (1− ρ)log
1− ρ

1− ρ̂(l)j

3.3 k-Sparse Autoencoder

One modification of sparse autoencoders would be k-Sparse autoencoder (Makhzani
and Frey, 2013), where sparsity is enforced by only keeping the top k highest
activations in the bottleneck layer with linear activation function.

First we run forward through the encoder network to get the compressed
code: z = g(x). Sort the values in the code vector z. Only the k-largest values
are kept while other neurons are set to 0. This can be done in a ReLU layer
with an adjustable threshold too.

Once we have a sparsified code: z = Sparsify(z), we can compute the
output and the loss from the sparsified code, L =‖ x − f(z) ‖22. And, then
use back-propagation to train the model. NOTE: back-propagation only goes
through the top k activated hidden units!

Figure 4: Filters of the k-sparse autoencoder for different sparsity levels k, learnt
from MNIST with 1000 hidden units. (Image source: Makhzani and Frey, 2013)

5

3.4 Contractive Autoencoder

Similar to sparse autoencoder, Contractive Autoencoder (Rifai, et al, 2011)
encourages the learned representation to stay in a contractive space for better
robustness.
It adds a term in the loss function to penalize the representation being too
sensitive to the input, and thus improve the robustness to small perturbations
around the training data points. The sensitivity is measured by the Frobenius
norm of the Jacobian matrix of the encoder activations with respect to the
input:

‖ Jf (X) ‖2F=
∑
ij

(
∂hj(X)

∂xi

)2

where hj is one unit output in the compressed code z = f(x).

This penalty term is the sum of squares of all partial derivatives of the
learned encoding with respect to input dimensions. The authors claimed that
empirically this penalty was found to carve a representation that corresponds
to a lower-dimensional non-linear manifold, while staying more invariant to
majority directions orthogonal to the manifold.

4 Probabilistic Autoencoders

In previous sections, we have seen different kinds of autoencoders, which take
data as input and discover some latent state representation of that data. More
specifically, our input data is converted into an encoding vector where each di-
mension represents some learned attribute about the data.

The most important detail to grasp here is that our encoder network is
outputting a single value for each encoding dimension. The decoder network
then subsequently takes these values and attempts to recreate the original input.
This might not be sufficient (or good enough) for many real world examples and
tasks. Thus, rather than building an encoder which outputs a single value to
describe each latent state attribute, we should formulate our encoder to describe
a probability distribution for each latent attribute.

Figure 5: Simple autoencoder for encoding faces. Image source: Jeremy Jordan

Intuition: Let’s say we’ve trained an autoencoder model on a large dataset of
faces with a encoding dimension of 6. An ideal autoencoder will learn descrip-
tive attributes of faces such as skin color, whether or not the person is wearing

6

glasses, etc. in an attempt to describe an observation in some compressed rep-
resentation.

In the example in figure 5, we’ve described the input image in terms of its
latent attributes using a single value to describe each attribute. However, we
may prefer to represent each latent attribute as a range of possible values. For
instance, what single value would you assign for the smile attribute if you feed
in a photo of the Mona Lisa? Using a variational autoencoder, we can describe
latent attributes in probabilistic terms.

Figure 6: Representing smile in terms of discrete and continous values. Image
source: Jeremy Jordan

With this approach, we’ll now represent each latent attribute for a given
input as a probability distribution. When decoding from the latent state, we’ll
randomly sample from each latent state distribution to generate a vector as
input for our decoder model.

Figure 7: Probabilistic Autoencoder. Image source: Jeremy Jordan

7

By constructing our encoder model to output a range of possible values
(a statistical distribution) from which we’ll randomly sample to feed into our
decoder model, we’re essentially enforcing a continuous, smooth latent space
representation. For any sampling of the latent distributions, we’re expecting
our decoder model to be able to accurately reconstruct the input. Thus, values
which are nearby to one another in latent space should correspond with very
similar reconstructions.

4.1 VAE: Variational Autoencoder

A variational autoencoder (VAE) provides a probabilistic manner for describing
an observation in latent space. Thus, rather than building an encoder which
outputs a single value to describe each latent state attribute, we’ll formulate
our encoder to describe a probability distribution for each latent attribute.

The idea of Variational Autoencoder (Kingma Welling, 2014), short for
VAE, is actually less similar to all the autoencoder models above, but deeply
rooted in the methods of variational bayesian and graphical model. Instead of
mapping the input x into a fixed vector z, we want to map it into a distribution.
Let’s label this distribution as pθ, parameterized by θ. The relationship between
the data input x and the latent encoding vector z can be fully defined by:

1. Prior pθ(z)

2. Likelihood pθ(x|z)

3. Posterior pθ(z|x)

Assuming that we know the real parameter θ∗ for this distribution, in order
to generate a sample that looks like a real data point x(i), we follow these steps:

1. First, sample a z(i) from a prior distribution pθ(z).

2. Then a value x(i) is generated from a conditional distribution pθ(x|z =
z(i)).

The optimal parameter θ∗ is the one that maximizes the probability of gen-
erating real data samples:

θ∗ = arg max
θ

n∏
i=1

pθ(x
(i))

Commonly we use the log probabilities to convert the product on RHS to a
sum:

θ∗ = arg max
θ

n∑
i=1

pθ(x
(i))

Now let’s update the equation to better demonstrate the data generation
process so as to involve the encoding vector:

pθ(x
(i)) =

∫
pθ(x

(i)|z)pθ(z)dz

8

Unfortunately it is not easy to compute pθ(x
(i)) in this way, as it is very

expensive to check all the possible values of z and sum them up. To narrow
down the value space to facilitate faster search, we would like to introduce a
new approximation function to output what is a likely code given an input x,
qφ(z|x), parameterized by φ.
Now the structure looks a lot like an autoencoder:

1. The conditional probability pθ(x|z) defines a generative model, similar to
the decoder fθ(x|z) introduced above.

2. The approximation function qφ(z|x) is the probabilistic encoder, playing
a similar role as gφ(z|x) above.

4.1.1 Loss Function: ELBO

The estimated posterior qφ(z|x) should be very close to the real one pθ(z|x).
We can use Kullback-Leibler divergence to quantify the distance between these
two distributions. KL divergence DKL(X||Y) measures how much information
is lost if the distribution Y is used to represent X.
In our case we want to minimize DKL(qφ(z|x) ‖ pθ(z|x)) with respect to φ.
But why use DKL(qφ ‖ pθ) (reversed KL) instead of DKL(pθ ‖ qφ) (forward
KL)?

• Forward KL divergence: DKL(P ‖ Q) = Ez∼P (z)log
P (z)
Q(z) we have to ensure

that Q(z) > 0 wherever P (z) > 0. The optimized variational distribution
q(z) has to cover over the entire p(z).

• Reversed KL divergence: DKL(Q ‖ P) = Ez∼Q(z)log
Q(z)
P (z) ; minimizing the

reversed KL divergence squeezes the Q(z) under P (z).

Let’s now expand the equation, DKL(qφ(z|x) ‖ pθ(z|x))

DKL(qφ(z|x) ‖ pθ(z|x)) =

∫
qφ(z|x)log

qφ(z|x)

pφ(z|x)
dz

=

∫
qφ(z|x)log

qφ(z|x)pθ(x)

pθ(z,x)
dz

=

∫
qφ(z|x)

(
logpθ(x) + log

qφ(z|x)

pθ(z,x)

)
dz

= logpθ(x) +

∫
qφ(z|x)log

qφ(z|x)

pθ(z,x)
dz

= logpθ(x) +

∫
qφ(z|x)log

qφ(z|x)

pθ(x|z)pθ(z)
dz

= logpθ(x) + Ez∼qφ(z|x)

[
log

qφ(z|x)

pθ(z
− logpθ(x|z)

]
= logpθ(x) +DKL(qφ(z|x) ‖ pθ(z)− Ez∼qφ(z|x)logpθ(x|z)

9

so, we have:

DKL(qφ(z|x) ‖ pθ(z|x)) = logpθ(x)+DKL(qφ(z|x) ‖ pθ(z)−Ez∼qφ(z|x)logpθ(x|z)

Once we rearrange the left and right hand side of the equation,

logpθ(x)−DKL(qφ(z|x) ‖ pθ(z|x)) = Ez∼qφ(z|x)logpθ(x|z)−DKL(qφ(z|x) ‖ pθ(z)

The LHS of the equation is exactly what we want to maximize when learning the
true distributions: we want to maximize the (log-)likelihood of generating real
data (i.e. logpθ(x)) and also minimize the difference between the real and esti-
mated posterior distributions (the term DKL works like a regularizer). NOTE
that pθ(x) is fixed with respect to qφ.

The negation of the above defines our loss function:

LV AE(θ, φ) = −logpθ(x) +DKL(qφ(z|x) ‖ pθ(z|x))

= −Ez∼qφ(z|x)logpθ(x|z) +DKL(qφ(z|x) ‖ pθ(z)

θ∗, φ∗ = arg max
θ,φ

LV AE

In Variational Bayesian methods, this loss function is known as the variational
lower bound, or evidence lower bound. The “lower bound” part in the name
comes from the fact that KL divergence is always non-negative and thus LV AE
is the lower bound of logpθ(x).

−LV AE = logp(x)DKL(qφ(z|x)pφ(z|x) ≤ logpθ(x)

Therefore by minimizing the loss, we are maximizing the lower bound of the
probability of generating real data samples.

4.1.2 Reparameterization Trick

The expectation term in the loss function invokes generating samples from
z ∼ qφ(z|x). Sampling is a stochastic process and therefore we cannot back-
propagate the gradient. To make it trainable, the reparameterization trick is
introduced: It is often possible to express the random variable z as a determin-
istic variable z = Γφ(x, ε), here ε is an auxiliary independent random variable,
and the transformation function Γφ is parameterized by φ, which converts ε to z.

For example, a common choice of the form of qφ(z|x) is a multivariate Gaus-
sian with a diagonal covariance structure:

z ∼ qφ(z|x(i)) = N (z;µ(i), σ2(i)I)

10

Figure 8: An variational autoencoder model with the multivariate Gaussian.
Image source: Lilian Weng, 2018

z = µ+ σ � ε w,here, ε ∼ N (0, I)

where � refers to element-wise product.

Figure 9: Illustration of how the reparameterization trick makes the z sampling
process trainable.(Image source: Slide 12 in Kingma’s NIPS 2015 workshop talk)

4.2 Conditional Variational Autoencoder (CVAE)

Conditional Variational Autoencoder (CVAE) is an extension of Variational
Autoencoder (VAE). We’ve seen that by formulating the problem of data gen-
eration as a bayesian model, we could optimize its variational lower bound to
learn the model.

However, we have no control on the data generation process on VAE. This
could be problematic if we want to generate some specific data. As an example,
suppose we want to convert a unicode character to handwriting. In vanilla

11

VAE, there is no way to generate the handwriting based on the character that
the user inputted. Concretely, suppose the user inputted character ‘2’, how do
we generate handwriting image that is a character ‘2’? We couldn’t. Hence,
CVAE was developed.

VAE essentially models latent variables and data directly, whereas CVAE
models latent variables and data, both conditioned to some random variables.
Recall in VAE, the objective is,

logpθ(x)−DKL(qφ(z|x) ‖ pθ(z|x)) = Ez∼qφ(z|x)logpθ(x|z)−DKL(qφ(z|x) ‖ pθ(z)

i.e., we want to optimize the log likelihood of our data P (x) under some
“encoding” error.

The original VAE model has two parts: the encoder qφ(z|x) and the decoder
pθ(z|x). Looking closely at the model, we could see why can’t VAE generate
specific data, as per our example above. It’s because the encoder models the
latent variable z directly based on x, it doesn’t care about the different type of
x. For example, it doesn’t take any account on the label of x. Similarly, in the
decoder part, it only models x directly based on the latent variable z.

We could improve VAE by conditioning the encoder and decoder to another
thing(s). Let’s say that other thing is c, so the encoder is now conditioned to
two variables x and c: qφ(z|x, c). The same with the decoder, it’s now condi-
tioned to two variables z and c: pθ(x|z, c).

Hence, our variational lower bound objective is now in this following form:

logpθ(x|c)−DKL(qφ(z|x, c) ‖ pθ(z|x, c)) = Ez∼qφ(z|x,c)logpθ(x|z, c)−DKL(qφ(z|x, c) ‖ pθ(z|c)

i.e. we just conditioned all of the distributions with a variable c.
Now, the real latent variable is distributed under pθ(z|c). That is, it’s now a
conditional probability distribution. Think about it like this: for each possible
value of c, we would have a pθ(z). We could also use this form of thinking for
the decoder.

4.3 beta-VAE

If each variable in the inferred latent representation z is only sensitive to one
single generative factor and relatively invariant to other factors, we will say this
representation is disentangled or factorized. One benefit that often comes with
disentangled representation is good interpretability and easy generalization to a
variety of tasks.

For example, a model trained on photos of human faces might capture the
gentle, skin color, hair color, hair length, emotion, whether wearing a pair of
glasses and many other relatively independent factors in separate dimensions.
Such a disentangled representation is very beneficial to facial image generation.

β-VAE (Higgins et al., 2017) is a modification of Variational Autoencoder
with a special emphasis to discover disentangled latent factors. Following the
same incentive in VAE, we want to maximize the probability of generating real

12

data, while keeping the distance between the real and estimated posterior dis-
tributions small (say, under a small constant δ):

max
θ,φ

Ex∼D[Ex∼qφ(z|x)logpθ(x|z)]

subject toDKL(qφ(z|x ‖ pθ(z)) < δ

We can rewrite it as a Lagrangian with a Lagrangian multiplier β under
the KKT condition. The above optimization problem with only one inequality
constraint is equivalent to maximizing the following equation F (θ, φ, β):

F (θ, φ, β) = Ez∼qφ(z|x)logpθ(x|z)− β(DKLqφ(z|x ‖ pθ(z))− δ)

F (θ, φ, β) = Ez∼qφ(z|x)logpθ(x|z)− βDKLqφ(z|x ‖ pθ(z)) + βδ

F (θ, φ, β) ≥ Ez∼qφ(z|x)logpθ(x|z)− βDKLqφ(z|x ‖ pθ(z)

The loss function of β-VAE is defined as:

LBETA(φ, β) = −Ez∼qφ(z|x)logpθ(x|z) + βDKLqφ(z|x ‖ pθ(z)

where the Lagrangian multiplier β is considered as a hyperparameter.

Since the negation of LBETA(φ, β) is the lower bound of the Lagrangian
F (φ, β, θ), minimizing the loss is equivalent to maximizing the Lagrangian and
thus works for our initial optimization problem.

When β=1, it is same as VAE. When β >1, it applies a stronger constraint
on the latent bottleneck and limits the representation capacity of z. For some
conditionally independent generative factors, keeping them disentangled is the
most efficient representation. Therefore a higher β encourages more efficient la-
tent encoding and further encourages the disentanglement. Meanwhile, a higher
β may create a trade-off between reconstruction quality and the extent of dis-
entanglement.

References

1. Geoffrey E. Hinton, and Ruslan R. Salakhutdinov. “Reducing the dimen-
sionality of data with neural networks.” Science 313.5786 (2006): 504-507.

2. Pascal Vincent, et al. “Extracting and composing robust features with
denoising autoencoders.” ICML, 2008.

3. Pascal Vincent, et al. “Stacked denoising autoencoders: Learning use-
ful representations in a deep network with a local denoising criterion.”.
Journal of machine learning research 11.Dec (2010): 3371-3408.

13

4. Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R. Salakhutdinov. “Improving neural networks by prevent-
ing co-adaptation of feature detectors.” arXiv preprint arXiv:1207.0580
(2012).

5. Sparse Autoencoder by Andrew Ng.

6. Alireza Makhzani, Brendan Frey (2013). “k-sparse autoencoder”. ICLR
2014.

7. Salah Rifai, et al. “Contractive auto-encoders: Explicit invariance during
feature extraction.” ICML, 2011.

8. Diederik P. Kingma, and Max Welling. “Auto-encoding variational bayes.”
ICLR 2014.

9. Tutorial - What is a variational autoencoder? on jaan.io

10. Youtube tutorial: Variational Autoencoders by Arxiv Insights

11. “A Beginner’s Guide to Variational Methods: Mean-Field Approximation”
by Eric Jang.

12. Carl Doersch. “Tutorial on variational autoencoders.” arXiv:1606.05908,
2016.

13. Irina Higgins, et al. ”-VAE: Learning basic visual concepts with a con-
strained variational framework.” ICLR 2017.

14. Christopher P. Burgess, et al. “Understanding disentangling in beta-
VAE.” NIPS 2017.

15. From Autoencoder to Beta-VAE, Lilian Weng, 2018.

16. Variational autoencoders, Jeremy Jordan, 2018.

14

	Introduction
	Vanilla Autoencoder
	Regularized Autoencoder
	Denoising Autoencoder
	Sparse Autoencoder
	k-Sparse Autoencoder
	Contractive Autoencoder

	Probabilistic Autoencoders
	VAE: Variational Autoencoder
	Loss Function: ELBO
	Reparameterization Trick

	Conditional Variational Autoencoder (CVAE)
	beta-VAE

